[learning torch] 6. optim (optimization tools)

[TOC]

ref: http://rnduja.github.io/2015/10/26/deep_learning_with_torch_step_7_optim/
doc: https://github.com/torch/optim/blob/master/doc/intro.md

Before we implement the gd update step by defining a gradientUpdate function and calling it in a loop.

function gradientUpdate(model, x, y, criterion, learningRate) 
    local pred = model:forward(x) -- assumes pred is what criterion expects as input 
    local loss = criterion:forward(pred, y) 
    model:zeroGradParameters() 
    local grad_cri = criterion:backward(pred, y) 
    model:backward(x, grad_cri) 
    model:updateParameters(learningRate) 
end

But this is functionality is implemented in the optim module. In addition to just grad-descent, it has more complicated optimization algorithms implemented.

Interface

The interface for all optimization algos are:

params_new, fs, ... = optim._method_(feval, params[, config][, state])

explination:

  • params: current parameters vector (1D tensor), this will be updated during optimization
  • feval: a user-defined closure that respects this API: f, df/dx = feval(x)
  • config: a table of parameters for the algorithm (e.g. learning rate)
  • state: a table of state variables
  • params_new: the resulting new parameter (in a 1D tensor), which minimizes the function f
  • fs: a table of f values evaluated during the optimization, fs[#fs] is the optimized function value

note:
As optim expects the input to be 1D tensors, we need to flatten the parameters in our model, this can be achieved via:

params, gradParams = model:getParameters()

the reuslting params and gradParams are all flattened into 1D tensor.

Example: sgd to train mlp the XOR function

Here is an example for learning an XOR using a mlp with one hidden layer.

model, criterion

First, define the model and criterion (use MSE here, see it as a regression problem):

require 'nn' 
inputs = 2; outputs = 1; HUs = 20 -- parameters

model = nn.Sequential()  -- make a multi-layer perceptron 
model:add(nn.Linear(inputs, HUs)) 
model:add(nn.Tanh()) 
model:add(nn.Linear(HUs, outputs))

criterion = nn.MSECriterion()

data

Then generate dataset of XORs: sample 2d inputs, and lables are -1 if the samples are of the sign, otherwise +1. Generate 128 training samples:

batchSize = 128 
batchInputs = torch.DoubleTensor(batchSize, inputs)  
batchLabels = torch.DoubleTensor(batchSize)

for i = 1, batchSize do 
   local input = torch.randn(2)   
   local label 
   if input[1] * input[2] > 0 then  -- calculate label for XOR function 
      label = -1 
   else 
      label = 1 
   end 
   batchInputs[i]:copy(input) 
   batchLabels[i] = label 
end

feval() closure

Then define the feval function that returns the loss and the gradient wrt the loss:

function feval(params) 
    gradParams:zero() 
    local outputs = model:forward(batchInputs) 
    local loss = criterion:forward(outputs, batchLabels) 
    local dloss_doutputs = criterion:backward(outputs, batchLabels) 
    model:backward(batchInputs, dloss_doutputs) 
    return loss, gradParams 
end

finally, apply optim.sgd to the batch for 500 epochs:

require 'optim' 
local sgdcfg = {learningRate=0.01}

for epoch=1,500 do 
    optim.sgd(feval, params, sgdcfg) 
end

can take some examples to test:

x = torch.Tensor(2) 
x[1] =  0.5; x[2] =  0.5; print(model:forward(x)[1]) 
x[1] =  0.5; x[2] = -0.5; print(model:forward(x)[1]) 
x[1] = -0.5; x[2] =  0.5; print(model:forward(x)[1]) 
x[1] = -0.5; x[2] = -0.5; print(model:forward(x)[1])

The output is:

-0.0073583598776157  
0.24137506111789     
0.31254747107449     
-0.14114052583337

And the signs are correct for XOR function.

comments powered by Disqus